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Abstract
Charge transfer in cobalt oxide Co3O4 in the spinel structure is evidenced by experimental
results using x-ray diffraction (XRD), x-ray absorption near edge structure (XANES)
spectroscopy, and Raman scattering at high pressures up to 42.1, 24.6 and 35.1 GPa,
respectively. While the cubic structure was found to persist under pressure up to 42.1 GPa
based on the XRD and Raman results, the mode Grüneisen parameter was calculated
according to our Raman measurements. Our structural data refinement revealed a structural
transition from the normal spinel structure at low pressures to a partially inverse spinel
structure at pressures above 17.7 GPa. This transition may be caused by the interaction of
charges between tetrahedral and octahedral sites via a charge transfer process. Evidence for
the charge transfer process is further supported by changes of the pre-edge features in the
XANES data.

(Some figures may appear in colour only in the online journal)

1. Introduction

Spinel, either normal or inverse type, is of great interest
in both basic and technological research. The normal
spinel structure can be expressed as (A)[B]2O4, where
A and B denote the divalent and trivalent cations, and
the parentheses and square brackets represent tetrahedral
and octahedral sites, respectively. The inverse spinel can
be expressed as (B)[AB]O4, with the A cation occupying
one half of the octahedral coordination sites, and the
B cation occupying the other half of the octahedral
coordination sites as well as the tetrahedral coordination
sites. In the intermediate or mixed spinels, elements A
and B are distributed in both octahedral and tetrahedral
sites. These spinels display many intriguing phenomena,
such as order–disorder transition [1–3], insulator–metal
transition [4–6], and magnetic transition [7–9] under high
pressure.

Cobalt oxide (Co3O4) is an important magnetic, p-type
semiconductor and has been widely used in solid-state

sensors [10], electrochemical devices [11], and heterogeneous
catalysts [12]. At ambient conditions, Co3O4 is a cubic normal
spinel with high-spin (HS) Co2+ ions (S = 3/2, e4

gt32g) in the

tetrahedral sites and low-spin (LS) Co3+ ions (S = 0, t62ge0
g)

in the octahedral sites of the cubic close-packed lattice of
oxygen anions. It is well known that Co3O4 undergoes a
magnetic transition from a high-T paramagnetic state to a
low-T long-range-ordered antiferromagnetic (AFM) state at
TN = 30 K [13, 14]. The magnetic nature of Co3O4 reveals
an incommensurate AFM order below TN [15], with the
exchanges of Co2+ ions at the 8a site and Co3+ ions at
the 16d site. The latter study showed that TN increases
with pressure [14], which implies that AFM ordering is
accompanied by a negative volume strain. With increasing
temperature, there is a cation disorder or charge transfer
induced LS–HS transition of the Co3+ ion at the 16d
site. Previous studies at both high and low temperatures
indicated that there is strong coupling among electronic and
magnetic properties and their strain conditions. However, no
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high-pressure studies have been reported thus far, to the best
of our knowledge, addressing structural changes with pressure
as well as the associated electronic and magnetic properties.
The purpose of this paper is to report our experimental
work on the structural, vibrational, and electronic behavior
of Co3O4 under high pressure using powder XRD, Raman
scattering and XANES methods. These studies reveal a
structural change associated with a charge transfer process
from Co2+ to Co3+ via hybridization with oxygen atoms
under high pressures.

2. Experimental methods

Co3O4 powder (US Research Nanomaterials, Inc.) with
particle sizes of ∼2.5 µm was loaded into a 100 µm
hole of a 35 µm thick preindented rhenium gasket. For
all measurements, pressure was generated by a symmetric
diamond anvil cell (DAC) with diamond culet diameter of
300 µm and calibrated by the ruby fluorescence method.

X-ray diffraction: high pressure powder x-ray diffraction
measurements were carried out at the 16-IDB beamline of
the High Pressure Collaborative Access Team’s facility, at
the Advanced Photon Source (APS) in Argonne National
Laboratory (ANL). Helium was used as a pressure-
transmitting medium, and was loaded at room temperature
by using a high-pressure gas-loading system [16]. The x-ray
beam size was approximately 5 µm × 7 µm at FWHM, the
x-ray beam wavelength was 0.3979 Å. Diffraction patterns
were recorded using a Mar CCD with exposure times between
10 and 60 s. The intensity versus 2θ patterns were obtained
using the FIT2D software [17]. Rietveld refinements of the
XRD patterns were performed using the FULLPROF software
package [18]. Equation of state analysis was performed by
means of EOSFIT software.

Raman spectroscopy: in our high-pressure Raman
measurements, both a 4:1 methanol–ethanol (ME) mixture
and helium were used as pressure-transmitting media in
two separate experiments, which went up to 35.1 GPa
and 20.1 GPa, respectively. We used the micro-Raman
spectrometer at GSECARS sector 13 to collect Raman
spectra. An argon-ion laser (λ = 514.5 nm, 50 mW) was used
as the excitation source and focused to a spot of diameter
4 µm at the sample position in a diamond anvil cell. The
Raman scattering light was dispersed using a Spec 0.5 m
monochromator with a 1800 grooves mm−1 grating, and
detected using a liquid nitrogen cooled CCD detector.

X-ray absorption near edge spectroscopy: XANES
spectra of the Co K-edge were recorded at the 16-BMD
beamline of HP-CAT, with the x-ray beam passing through
a beryllium gasket. The x-ray beam size was approximately
7 µm × 11 µm. Helium was used as pressure-transmitting
medium for pressures up to 24.6 GPa.

3. Results and discussions

3.1. X-ray diffraction

All diffraction patterns measured for pressures up to 42.1 GPa
were analyzed by full-profile (Rietveld) refinements. The

Figure 1. Observed (olive points), calculated (solid black line), and
difference (solid blue line) x-ray powder diffraction patterns for
Co3O4 at selected pressure (indicated). The diffraction patterns are
refined assuming an admixture of CoO phase. Red vertical markers
indicate Bragg reflections of the two phases (upper: Co3O4; lower:
CoO).

refined parameters include the lattice parameters, the atomic
positions of oxygen, isotropic thermal parameters for all
atomic sites, a polynomial background, Pseudo-Voigt profile
parameters, and an overall intensity scaling factor. For all
diffraction patterns, convergence was achieved at residuals
(with a subtracted background) Rwp < 2%. At pressures
above 33.4 GPa, only lattice parameters were extracted from
the diffraction patterns. Figure 1 displays the XRD results
of the sample in helium medium with the refinement results
for the patterns collected at 1.4, 11.1, 21.4, and 31.1 GPa. A
small amount of CoO impurity was detected in the diffraction
patterns. Two-phase refinements were performed in order to
account for the admixture of CoO. Our diffraction results
show that the cubic phase of Co3O4 remains within the
pressure range up to 42.1 GPa.

One refinement result is the oxygen position u, which
is generally used as an indicator of cation ordering or
disordering within the spinel structure [1, 19–23]. The
oxygen position parameters obtained at various pressures are
presented in figure 2 (upper panel). The oxygen position
u-values decreases linearly with pressure (u = 0.2632(1) −
0.000 09(1)P, where P is in GPa) below 17.7 GPa and then
slightly increase with pressure above 17.7 GPa up to 33.4 GPa.
During the pressure releasing process, the oxygen position
parameter u-values are smaller than those during the loading
process. After pressure releasing to ambient conditions, the
oxygen position parameter is much smaller than that before
the initiation of compression. It is interesting to compare the
results with other spinels. All the normal spinels, such as
MgAl2O4 [1, 24], ZnAl2O4 [25] and ZnGa2O4 [26], display
a negative pressure dependence of u-values under pressure,
which is in qualitative agreement with our results for Co3O4
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Figure 2. The upper panel gives the pressure evolution of oxygen
position parameter u, the lower panel gives the pressure evolution of
the polyhedral volume. Solid symbols: loading pressure. Open
symbols: unloading pressure. Solid line: linear fit to experiments.

below 17.7 GPa. However, in the inverse spinels, such as
Fe3O4 [27–30] and γ -Ni2SiO4 [31], the u parameter values
remain constant or slightly increase with pressure, which
shows a similar trend to our results for Co3O4 at pressures
above 17.7 GPa. The changes in u-values suggest that there
may be a structural change for Co3O4 from normal spinel to
inverse spinel at 17.7 GPa.

The polyhedral volume in a spinel structure can be
derived from the lattice parameter a and oxygen position u.

Vtet =
64
3 V

(
u− 1

8

)
, Voct =

128
3 V

(
u− 3

8

)
u. (1)

The compression effect of polyhedral volumes of the
octahedron and the tetrahedron are shown in figure 2 (lower
panel). At pressures below 17.7 GPa, the octahedral poly-
hedron shows a lower compressibility than the tetrahedron.
Above 17.7 GPa, the compression behavior is reversed, with
the tetrahedron showing a lower compressibility than that
of the octahedron. Hazen and Finger [32] demonstrated
that the compressibilities of cation-coordinated polyhedra
are proportional to the polyhedral volume and inversely
proportional to the cation formal valence. Theoretical
investigations revealed that a tetrahedron occupied by divalent
cations is more compressible than the same occupied by
trivalent cations when pressure is applied [22]. If disorder
exists between Co2+ and Co3+ with increasing pressure,
before 17.7 GPa, the tetrahedral and octahedral sites are
mainly occupied by bivalent and trivalent cations respectively;
after 17.7 GPa, this disorder is large enough to change
the compressibility of the polyhedrons. The corresponding
polyhedral compressibility will change, as we observe in the
figure 2 (lower panel).

The bond lengths are given by:

R(Co)−O = a(
√

3u− 0.125) and

R[Co]−O = a
√

3u2 − 2u+ 0.375.
(2)

Figure 3. Pressure dependence of the bond lengths on Co3O4.
Square: tetrahedral Co–O bond length. Circle: octahedral Co–O
bond length. (solid: loading, open: unloading).

As presented in figure 3, the tetrahedral bond length
decreases faster than the octahedral bond length at pressures
below 17.7 GPa. Above 17.7 GPa, the trend is just
reversed, the octahedral bond length decreases faster than the
tetrahedral bond length.

Both the polyhedral compression and the bond length
results (figures 2 and 3) suggest an order–disorder transition
between the Co2+ and Co3+ at the tetrahedral and octahedral
sites under pressure. The small u-value after pressure release
to ambient suggests that the disordered states could be at least
partially preserved upon pressure release. Since the cation
disorder is generally associated with only small changes in
volume [22, 33], the structural transition may leave little or no
volume discontinuity with pressure. This is indeed the case,
as will be shown below.

The pressure–volume data of Co3O4 are shown in
figure 4. The volume reduction of Co3O4 is ∼12.6% in the
pressure range of this study. The bulk elastic properties of
Co3O4 were investigated by the third-order Birch–Murnaghan
(BM) equation of state (EOS) [34], and the Vinet EOS [35].
The obtained results are listed in table 1, where P,V , and
V0 denote the pressure, the volume at pressure P, and the
volume at ambient pressure, respectively. K0 and K′0 are
the zero-pressure bulk modulus and its pressure derivative
respectively.

The bulk modulus of Co3O4 in our study is in close
agreement to those reported in previous ab initio studies [36].
The pressure derivative of bulk modulus K′0 is larger than
4. This result is similar to what was observed in other
normal spinels, ZnGa2O4 [26], ZnFe2O4 [37], ZnAl2O4 [25]
and MgAl2O4 [38]. However, it has been argued that the
large value of K′0 may be explained by a non-hydrostatic
effect [39]. To clarify this and the possible normal-to-inverse
transition around 17.7 GPa from the discontinuity of u, we
used two separate regions in fitting the data (see table 1 for
the results). In the low-pressure region, K′0(5.1±1.4) is larger
than 4. In the high-pressure region, K′0(3.9 ± 1.1) is very
close to 4 with large values in the bulk modulus. If there
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Table 1. Comparison of measured and calculated values of the bulk moduli of Co3O4.

Co3O4 EOS K0 (GPa) K′0 V0 (Å
3
)

This study BM 190 ± 5 6.2 ± 0.4 529.60 ± 0.44
Vinet 189 ± 5 6.3 ± 0.3 529.63 ± 0.43

Theory [36] M 199 4 549.35
M 192 4 565.61

0 GPa < P < 17 GPa BM 199 ± 13 5.1 ± 1.4 529.32 ± 0.65
BM 203 ± 3 4 528.99 ± 0.37

17 GPa < P < 40 GPa BM 249 ± 33 3.9 ± 1.1 523.07 ± 3.12
BM 246 ± 3 4 523.44 ± 0.49

Figure 4. Pressure evolution of the volume of Co3O4. The solid
blue line represents the third order Birch–Murnaghan EOS fitting
result; the red line represents the Vinet EOS fitting result. Errors are
within the symbol sizes.

were some non-hydrostatic effect on the bulk modulus, the
high-pressure region should give a K′0 larger than 4. Thus, the
non-hydrostatic effect is not the major factor in determining
the compression behavior. Both theoretical and experimental
results show that the bulk modulus of the inverse spinel is
larger than that of the normal spinel, whereas the volume is
opposite. From this, we may conclude that there is a gradual
transition from normal to inverse spinels before 17 GPa, above
which the spinel behaves as an inverse spinel.

The discontinuity of u, the polyhedral volume, the bond
length, and the compression behavior with pressure may be
a result of a charge transfer between Co2+ and Co3+ via
oxygen. This is due to the fact that charge transfer between
Co2+ and Co3+ requires much lower energy than direct
exchange of ions. This charge transfer originates from a
different mechanism in the covalence between (Co2+)–O and
[Co3+

]–O bonds. At ambient conditions, Co3O4 presents a
covalent component in the primarily ionic bonding character.
When the tetrahedral site is occupied by Co2+ (e4

gt32g, eg
orbitals are fully occupied and t2g orbitals are half occupied),
the eg orbitals extend toward the edge and the t2g orbitals
toward the O2− (though not directly). Thus, the hybridization
between the t2g orbitals and orbitals of O2− is stronger than
that between the eg orbitals and the orbitals of O2−. There are
three unpaired electrons in the t2g orbitals; when the covalent
bonding forms between Co2+ and O2−, the unpaired electrons

in the t2g orbitals of Co2+ will be paired with the 2p electrons
of the oxygen. Thus, the covalent bond is contributed by both
Co2+ and O2− electrons. On the other hand, at the octahedral
site occupied by Co3+ (t62ge0

g, t2g orbitals are fully occupied
and eg orbitals are empty), the eg orbitals extend directly
toward the O2− at the vertices and the t2g orbitals extend
toward the edges. Thus, the eg orbitals hybridize more heavily
with the orbits of O2− than t2g orbitals. Due to the stronger
crystal field energy compared to the spin-paring energy, the t2g
orbitals in the Co2− are occupied by three unpaired electrons,
whereas the eg orbitals in the Co3+ are unoccupied. When
the covalent bond is formed between Co3+ and O2−, it is
d2(eg)sp3 hybridized and all of the bonding electrons will
donate to oxygen with the same amounts of spin-up and
spin-down electrons [40].

The degree of covalence is strongly dependent upon the
bond length and bond angles. From our diffraction data, the
bond angle (O–Co–O) in tetrahedral sites remains unchanged
at 70.53◦ under pressure. In octahedral sites, the bond angle
change (O–Co–O) with pressure is found to be small and the
bond angle is close to 90◦. Thus, the degree of covalence is
then largely dependent on the bond length. Under pressure,
as the bond length decreases, there will be more and more
covalent component in both (Co2+)–O and [Co3+

]–O bonds.
However, the result of this covalent effect is totally different,
as discussed before. The Co2+ will contribute more unpaired
electrons to the covalent bonding, whereas Co3+ will accept
more paired electrons from oxygen. It thus appears that there
is charge transfer from Co2+ to Co3+, and this probably cause
the spin moment in Co2+ to decrease and no spin moment
change in Co3+. This view of covalence-induced spin moment
is consistent with the observation of a very low spin moment
in Co3S4 [41].

3.2. XANES results

Cobalt K-edge XANES spectra collected at high pressures
are shown in figure 5. The Co K absorption edge spectrum
comprises five features contributed by Co2+ and Co3+: two
pre-edge (1s–3d), two shoulders (1s–4s), and one edge crest
(1s–4p) [42]. The pre-edge peak intensity is closely related
to the number of 3d electrons, symmetry, and coordination
number. The pre-edges from the tetrahedral Co2+ are stronger
than the octahedral Co3+, due to the tetrahedral ligand field
allowing dipole transition, while in the octahedral symmetry,
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Figure 5. Normalized Co K-edge XANES spectra of Co3O4 at selected pressure (left panel, a). Right panel (b) shows the relative integrated
peak intensity ratio Ib/Ia changing with pressure.

only weaker quadrapole transition is allowed. Another feature
is that the pre-edge from the octahedral site is usually broader
than the pre-edge from the tetrahedral site. So the sharper
and stronger pre-edge peak a (figure 5(a)) located at lower
energy position is from the tetrahedral divalent cobalt, and the
weaker and broader pre-edge peak b at higher energy position
is from the octahedral trivalent cobalt. We fitted the pre-edge
range using a background and two Gaussian functions to
get the integrated intensities of a and b. Upon compression
up to 17 GPa, the relative intensity of Ib/Ia decreases with
increasing pressure (figure 5(b)). Within this pressure range,
there is no change in the symmetry and coordination number
of both sites. Thus, the intensity change can be interpreted
as due to the change in the number of 3d electrons or the
hybridization of cobalt 3d and oxygen 2p electrons, i.e. the
oxidation state. In other words, the relative intensity change in
the pre-edge suggests that the changes in the unoccupied Co
3d density of states are the reason for this behavior, implying a
charge transfer from the Td site to the Oh site. The results from
our XANES study thus further support the charge transfer
process obtained from our XRD data.

3.3. Raman spectroscopy

For Co3O4 in the normal spinel structure (Co)[Co]2O4 (space
group Fd3̄m), there are five Raman-active phonon modes
A1g + Eg + 3F2g [43]. As shown in figure 6, the Raman
data at 2.4 GPa are consistent with those measured at ambient
conditions, with five modes observed at 196.7 cm−1 F2g(1),
484.1 cm−1 Eg, 523.1 cm−1 F2g(2), 621.5 cm−1 F2g(3),
693.4 cm−1 A1g. The A1g mode is generally assigned to the
symmetric stretching of the Co–O bond in tetrahedral sites,

Figure 6. The pressure evolution of Raman spectra at selected
pressure for Co3O4.

and is often referred to as the tetrahedral breathing mode
(TBM).

Figure 6 shows the Raman spectra of Co3O4 at different
pressures up to 35.1 GPa using ME as pressure-transmitting
medium. At first, the Raman bands broaden and shift to
higher energies with increasing pressure. The F2g(1) and
F2g(3) modes cannot be observed at pressures higher than
15 GPa and 20 GPa, respectively. It is well known that the
Grüneisen parameter plays a crucial role in understanding the
thermodynamic and thermoelastic behavior of solids. Figure 7
shows the pressure dependence of Raman modes. Using the
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Figure 7. Pressure dependence of Raman mode frequencies.
Straight line show the fits to linear function.

Table 2. Ambient-pressure Raman frequencies ω0, their pressure
dependences dω/dP, and mode Grüneisen parameter γ of Co3O4.

Modes ω0 (cm−1)
dω/dP
(cm−1 GPa−1)

Grüneisen
parameter (γ )

F2g(1) 196.9 0.6 0.57
Eg 485.4 2.4 0.92
F2g(2) 525.9 2.6 0.92
F2g(3) 620.4 4.4 1.32
A1g 696.8 3.4 0.91

definition of the zero-pressure mode Grüneisen parameter γ0

γ0 = −

(
d lnω
d ln V

)
P=0
=

B0

ω0

(
dω
dP

)
P=0

where ω and ω0 are the Raman frequencies under pressure
and at ambient conditions, B0 the bulk modulus. Combined
with our XRD experimental value of the bulk modulus B0 =

187 GPa, the obtained ambient-pressure Raman frequencies
ω0, their pressure derivatives dω/dP and the mode Grüneisen
parameters γ0 are shown in the table 2. There was no
discontinuity during this charge transfer process.

Summary

The structural, vibrational, and electronic properties of the
cubic spinel of Co3O4 have been studied under pressure
by x-ray diffraction, Raman spectroscopy, and XANES.
The cubic phase of Co3O4 is stable in the pressure range
of this study. The analyses of structural refinements show
the discontinuities of oxygen position, bond length, and
polyhedral volume at high pressure, which can be explained
by a charge transfer process via hybridization between cobalt
and oxygen. The change marks a structural transition from
the normal-type spinel to a partially inverse-type spinel at
17.7 GPa. The result from XRD is supported by the changes in
the unoccupied Co 3d density of state, which was evidenced
in XANES measurements under high pressures. From the
Raman measurements, we obtained the Grüneisen parameters,
and no discontinuity was observed.
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